
A Tutorial on Rational Generating Functions

Christopher Thomas Ryan
Sauder School of Business

University of British Columbia
2053 Main Mall, Vancouver, BC, Canada, V6T 1Z2

chris.ryan@sauder.ubc.ca

Albert Xin Jiang
Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC, Canada, V6T 1Z4
jiang@cs.ubc.ca

Kevin Leyton-Brown
Department of Computer Science
University of British Columbia

2366 Main Mall, Vancouver, BC, Canada, V6T 1Z4
kevinlb@cs.ubc.ca

March 30, 2010

1 Rational generating functions
Many of the positive results in this paper are derived from results from the literature on
rational generating functions and in particular from the method of Barvinok and Woods
[2]. Generating functions have been applied in an analogous fashion in a variety of other
contexts, including social choice theory [7], discrete optimization [6], combinatorics
[4], and compiler optimization [8]. We here provide a brief and selective overview of
this theory. We have two aims: to introduce some machinery that is used in proving our
main theorem, and to invite other researchers to use these methods in future work.

Generating functions offer the key benefit of compactly representing exponential-
cardinality sets of integer points while efficiently supporting the computational oper-
ations of counting and enumerating points in the set. We demonstrate the essence of
the approach in the following simple example. Consider the set of integers on the line
between 0 and n. We can represent these points by associating an exponent of a complex
variable ξ with every integer x ∈ [0, n]. The choice of variable ξ plays an important role
in later analysis, where residue calculus can be used to extract important information.
Using this encoding we can represent the integers in the interval [0, n] as the exponents

1

in the polynomial expression
n∑
x=0

ξx, (1)

called a generating function representation. So far we have not gained much: there
are exponentially many terms in (1) (in terms of the binary encoding size of n), just as
there are in an explicit listing of the numbers 0, 1, . . . , n. However, we can also write
the expression as

n∑
x=0

ξx =
1

1− ξ
− ξn+1

1− ξ
. (2)

Thus, we have written the long sum (1) as a short sum of two rational functions,
called a rational generating function representation. The encoding length of this new
representation is now polynomial in the encoding length of n. Not only does this
representation appeal because of its compact size, but it also offers computational
benefits. Observe that we can compute the cardinality of our set by setting ξ = 1 and
then evaluating the sum. Working with Equation (1), this requires an exponential number
of arithmetic operations. However, we can obtain the same result by working with (2)
(letting ξ → 1 and using L’Hôpital’s rule), thereby performing exponentially-fewer
arithmetic operations.

We are often interested in sets arising from unions, intersections and differences
of simpler sets of integers. A basic illustration is as follows: suppose we have the set
{0, . . . , n} represented by the rational generating function 1−ξn+1

1−ξ , as well as the set

{n+1, . . . , 2n} represented by the rational generating function ξn+1−ξ2n+1

1−ξ . A rational
generating function representing the union of these two disjoint sets can by found by
summing the representations of {0, . . . , n} and {n+ 1, . . . , 2n}:

1− ξn+1

1− ξ
+
ξn+1 − ξ2n+1

1− ξ
=

1− ξ2n+1

1− ξ
.

It is straightforward to verify that 1−ξ2n+1

1−ξ is a rational generating function encoding of
the union {0, . . . , 2n}. A more general result obtains when combining sets that are not
disjoint (Lemma 2 below). Observe that the complication in this case is that we cannot
simply sum the two generating function representations, as this will yield nonunitary
weights on the terms in the new generating function that correspond to points lying in
the intersection of the two sets.

Working with rational generating functions is of course unnecessary in the simple
setting we have discussed so far, but it becomes useful when extended to deal with more
general sets of integer points in higher dimensions. A key milestone was the work of
Barvinok [1], who introduced a polynomial-time algorithm for representing as a rational
generating function the integer points inside of a rational polytope P ⊆ Rm given by an
inequality system {x ∈ Rm :Mx ≤ b}, provided the dimension m is fixed. Note that
representing the integer set P ∩Zm by the inequality description of P gives little hint
as to its cardinality. However, as in our simple example, we shall see that a generating
function representation allows us to count the number of integer points in P exactly in
polynomial time.

2

Now we briefly describe Barvinok’s algorithm and its useful extensions and applica-
tions. Consider the generating function of the lattice point set P ∩Zm, which is defined
as

g(P ∩Zm; ξ) =
∑

x∈P∩Zm

ξx

=
∑

x∈P∩Zm

ξx1
1 · · · ξxm

m . (3)

Note that each lattice point x in P is mapped to the exponent of a monomial ξx in
g(P ∩Zm; ξ).

Lemma 1 (Barvinok’s Theorem [1]) Let P be a polytope in Rm and S = P ∩ Zm
with generating function g(S, ξ) given by (3) which encodes the lattice points inside P .
Then, there exists an algorithm which computes an equivalent representation of the form

g(S; ξ) =
∑
i∈I

γi
ξci∏m

k=1(1− ξdik)
, (4)

where I is a polynomial-size index set and all data are integer. A formula of this type
is called a short rational generating function. The algorithm runs in polynomial time
when the dimension m is fixed.

Note that the number of binomial terms in the denominator of each rational term is m
and thus fixed when the dimension is fixed. When a lattice point set S is expressed
in the form of (4) we refer to g(S; ξ) as its Barvinok encoding. In the algorithms that
follow, when a set S is given as input or output using its Barvinok encoding g(S, ξ), the
encoding size is the binary encoding of the integer vectors γ, ci,di1, . . . ,dim for i ∈ I .

It is important to note that Lemma 1 only describes how to encode sets of integer
points inside of polytopes. The key result that makes this theory useful in our setting is
that some more general lattice point sets arising from simple operations on polytopal
lattice point sets also admit short rational generating function encodings. Barvinok and
Woods [2] developed powerful algorithms that apply to these more general settings. For
our purposes the most important algorithm concerns constant-length Boolean combina-
tions of polyhedra. A Boolean combination of the sets S1, . . . , Sk is any combination
of unions, intersections and set differences of those sets. For instance, (S1 ∩ S2) \ S3 is
a Boolean combination of the sets S1, S2 and S3.

Lemma 2 (Boolean Operations Lemma [Cor. 3.7 in 2]) Given fixed integers k and
` there exists a constant s and a polynomial-time algorithm for the following problem.
Given as input, in binary encoding,

(I1) the dimension m and

(I2) Barvinok encodings of k finite sets Sp ⊆ Zm, g(Sp; ξ) such that for each
rational term the number of binomials in the denominator is at most `,

output, in binary encoding,

3

(O1) rational numbers γi, integer vectors ci, dij for i ∈ I , j = 1, . . . , si, where
si ≤ s, such that

g(S; ξ) =
∑
i∈I

γi
ξci

(1− ξdi1) . . . (1− ξdisi)

is a rational generating function of the finite set S that is the Boolean combina-
tion of the sets S1, . . . , Sk, and where each rational term in the expression has
at most s terms in its denominator and where I is a polynomial-sized index set.

We remark that if k were allowed to vary, the number of binomials in the denomi-
nators would become exponential (essentially doubling with each Boolean operation);
thus, we must require that k be fixed in order to achieve a polynomial run time. We
also note that if the input sets Sp ⊆ Zm are integer points inside of polyhedra whose
Barvinok encodings g(S; ξ) arise from applying Lemma 1 then the condition that the
number of binomials ` in the denominators are fixed follows under the assumption that
the dimension m is fixed.

Disjoint unions are a special case of combining sets. Thus, we could address them
as well using the Boolean Operations Lemma. However, in this case we can prove a
stronger result, analogous to our method in the simple example above. This allows the
number of sets k in the union to be polynomial in the input size instead of fixed.

Lemma 3 (Disjoint Unions) If two lattice point sets S and T are disjoint then the
generating function for S ∪ T is the sum of generating functions for S and T . More
generally, for disjoint lattice point sets S1, . . . , Sk:

g

(
k⊎
i=1

Si, ξ

)
=

k∑
i=1

g(Si, ξ),

where
⊎

denotes disjoint union.

Once a rational generating function of a set S has been computed, various pieces of
information can be extracted from it. First, we consider computing the cardinality of S.

Lemma 4 (Counting Lemma) Let the dimensionm be a fixed constant. Given a lattice
point set S ∈ Zm input as its Barvinok encoding g(S, ξ), there exists a polynomial-time
algorithm for computing |S|.

The idea behind the proof of this result is analogous to the basic example at the
beginning of this section. Given a Barvinok encoding of a lattice point set S as in (4),
each of the basic rational functions has poles (the point ξ = 1 in particular is a pole
of all the basic rational functions), but after summing up only removable singularities
remain. Obtaining the exact number of lattice points of lattice point set S is easy in (3),
since clearly |S| = g(S;1). Since (4) is a formula for the same function (except for
removable singularities), we also have |S| = limξ→1 g(S; ξ), which can be evaluated in
polynomial time by performing a residue calculation with each basic rational function
in the sum (4).

4

We can also explicitly enumerate all elements of S. We note that the cardinality
of S can be exponential in the encoding length. Nevertheless there exists a polynomial-
space, polynomial-delay enumeration algorithm. The following result is derived from
Theorem 7 of [5].

Lemma 5 (Enumeration Lemma) Let the dimension m and the maximum number `
of binomials in the denominators be fixed. Then there exists a polynomial-space,
polynomial-delay enumeration algorithm for the following enumeration problem. Given
as input, in binary encoding, a bound M and the Barvinok encoding g(S, ξ) of a
lattice point set S ∈ [−M,M]m ∩ Zn, output, in binary encoding, all points in S in
lexicographic order.

Note, the proof relies on a binary search procedure that uses cardinality counts to
test for emptiness of each search region. Binary search can also give useful results for
optimizing. By applying Lemma 2 and a binary search argument, we can optimize in
polynomial time any linear objective over a set of lattice points in Barvinok encoding.

When the objective function is an arbitrary polynomial function (without any as-
sumptions on convexity) that is nonnegative on a set with by a Barvinok encoding, then
it is still possible to use a fully polynomial time approximation scheme (FPTAS).

Lemma 6 (FPTAS for maximizing non-negative polynomials [5]) Let the dimension
n and the maximum number ` of binomials in the denominator be fixed. There exists a
polynomial-time algorithm for the following problem. Given as input an

(I1) two vectors xL, xU ∈ Zk,

(I2) a Barvinok encoding of a finite set S ⊆ Zk of lattice points that is contained in
the box {x : xL ≤ x ≤ xU },

(I3) a list of coefficients fi ∈ Q, encoded in binary encoding, and exponent vectors
αi ∈ Z+, encoded in unary encoding, representing a polynomial

f =
∑
i

fix
αi ∈ Q[x1, . . . , xn]

that is non-negative on S,

(I4) a positive rational number 1/ε encoded in unary encoding,

output, in binary encoding,

(O1) a point xε ∈ S that satisfies

f(xε) ≥ (1− ε)f∗ where f∗ = max
x∈S

f(x).

Here we have offered only some highlights from the theory of rational generating
functions, focusing on results needed for the analysis in this paper. A more complete
picture of this theory can be obtained from the excellent textbook by Beck and Robbins
[3].

5

References
[1] A. Barvinok. A polynomial time algorithm for counting integral points in polyhedra

when the dimension is fixed. Mathematics of Operations Research, 19(4):769–779,
1994.

[2] A. Barvinok and K. M. Woods. Short rational generating functions for lattice point
problems. Journal of the American Mathematical Society, 16(957-979), 2003.

[3] M. Beck and S. Robbins. Computing the Continuous Discretely: Integer-point
Enumeration in Polyhedra. Springer, 2007.

[4] J. A. De Loera. The many aspects of counting lattice points in polytopes. Mathema-
tische Semesterberichte, 52(2):175–195, August 2005.

[5] J. A. De Loera, R. Hemmecke, and M. Köppe. Pareto optima of multicriteria integer
linear programs. INFORMS Journal on Computing, 21(1):39–48, 2009.

[6] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice
point counting in rational convex polytopes. Journal of Symbolic Computation,
38(4):1273–1302, October 2004.

[7] D. Lepelley, A. Louichi, and H. Smaoui. On Ehrhart polynomials and probability
calculations in voting theory. Social Choice and Welfare, 30(3):363–383, 2008.

[8] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Analytical
computation of Ehrhart polynomials: Enabling more compiler analyses and opti-
mizations. In CASES: Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pages 248–258, 2004.

6

	Rational generating functions

